PRA-RANCANGAN PABRIK TITANIUM DIOKSIDA DARI ILMENIT DAN ASAM SULFAT KAPASITAS 120.000 TON/TAHUN

TUGAS AKHIR

Diajukan Guna Memenuhi Syarat Menyelesaikan Pendidikan Sarjana Strata-1 Program Studi Teknik Kimia Fakultas Teknik Universitas 17 Agustus 1945 Semarang

Disusun Oleh:

Jihan Yuni Susanti

201003242010353

PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS 17 AGUSTUS 1945 SEMARANG 2024

PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS 17 AGUSTUS 1945 SEMARANG

LEMBAR PENGESAHAN

TUGAS AKHIR

PRA-RANCANGAN PABRIK TITANIUM DIOKSIDA DARI ILMENIT DAN ASAM SULFAT KAPASITAS 120.000 TON/TAHUN

Nama : Jihan Yuni Susanti NIM : 201003242010353

Semarang, 24 Juli 2024

Dosen Pembimbing I,

Dosen Pembimbing II,

Ir. Mega Kasmiyatun, MT. NIDN. 06-1902-6101 <u>Ahmad Shobib, ST., MT.</u> NIDN, 06-1608-8603

Mengetahui,

Kepala Program Studi Teknik Kimia

Universitas 17 Agustus 1945 Semarang S 199 6 CRSITA Muryanto, M.Eng.Sc., Ph.D NIDN. 00-1707-5402

DAFTAR ISI

Halaman Judul·····	i
Lembar Pengesahan	ii
Kata Pengantar	iii
Daftar Isi	iv
Daftar Tabel·····	vii
Daftar Gambar	viii
Intisari	ix
BAB I PENDAHULUAN	1
1.1 Latar Belakang·····	1
1.2 Kapasitas Rancangan	1
1.2.1 Kebutuhan Titanium Dioksida di Indonesia·····	1
1.2.2 Kapasitas Minimum Pabrik yang Masih Berdiri	3
1.2.3 Ketersediaan Bahan Baku	3
1.3 Penentuan Lokasi Pabrik·····	4
1.4 Tinjauan Pustaka	5
1.4.1 Pemilihan Proses·····	5
1.4.2 Kegunaan Produk	6
1.4.3 Sifat sifat Fisis dan Kimia Bahan Baku dan Produk	6
1.4.3.1 Bahan Baku·····	6
1.4.3.2 Bahan Tambahan	7
1.4.3.3 Produk	8
BAB II DESKRIPSI PROSES·····	9
2.1 Spesifikasi Bahan Baku dan Produk	9
2.1.1 Bahan Baku	9
2.1.2 Bahan Pembantu Serbuk Besi	9
2.1.3 Produk Titanium Dioksida	10
2.2 Konsep Proses	10
2.2.1 Dasar Reaksi	10
2.2.2 Tinjauan Thermodinamika	10
2.2.3 Kondisi Operasi	15

2.3 Diagram Alir Proses	15
2.3.1 Langkah Proses·····	15
2.4 Diagram Alir Neraca Masa dan Neraca Panas	17
2.4.1 Neraca Masa·····	17
2.4.2 Neraca Panas·····	23
2.5 Layout Pabrik dan Peralatan Proses·····	29
2.5.1 Layout Pabrik	29
2.5.2 Layout Peralatan Proses	31
BAB III SPESIFIKASI ALAT	33
BAB IV UNIT PENDUKUNG PROSES DAN LABORATORIUM······	40
4.1 Unit Penyediaan Air	40
4.1.1 Air Proses	40
4.1.2 Air Sanitasi	41
4.1.3 Air Pendingin	42
4.1.4 Air untuk Pemadam Kebakaran	43
4.2 Unit Penyediaan Tenaga Listrik	43
4.3 Unit Penyediaan Bahan Bakar	44
4.4 Unit Pengolahan Limbah·····	44
4.5 Laboratoriumu	45
4.5.1 Program Kerja Laboratorium·····	45
4.6 Pengendalian Mutu	46
4.7 Keselamatan dan Kesehatan Kerja (K3)·····	47
BAB V MANAJEMEN PERUSAHAAN·····	49
5.1 Bentuk Perusahaan	49
5.2 Struktur Organisasi	50
5.3 Tugas dan Wewenang	53
5.4 Pembangian Jam Kerja Karyawan	60
5.5 Status Karyawan dan Sistem Gaji	61
5.6 Penggolongan Jabatan, Jumlah Karyawan dan Gaji	61
5.6.1 Penggolongan Jabatan	61
5.6.2 Perincian Jumlah Karyawan	62
5.6.3 Penggolongan Gaji	64

5.7 Kesejahteraan Karyawan	65
5.8 Manajemen Produksi	66
5.8.1 Perencanaan Produksi	66
5.8.2 Pengendalian Produksi	67
5.9 Keselamatan dan Kesehatan kerja (K3)	68
BAB VI PERHITUNGAN EKONOMI	69
6.1 Perhitungan Biaya	69
6.1.1 Capital Investment	69
6.1.2 Manufacturing Cost	71
6.1.3 General Expanse	72
6.2 Analis Kelayakan	72
6.3 Dasar Perhitungan	73
6.4 Hasil Perhitungan	74
6.4.1 Capital Investment	74
6.4.2 Manufacturing Cost Investment (MCI)·····	74
6.4.3 Working Capital Investment (WCI)·····	76
6.4.4 General Expanse (GE)·····	76
6.5 Perhitungan Analisa Kelayakan	76
6.5.1 Sales and Profit	76
6.5.2 Return on Investment (ROI)·····	76
6.5.3 Pay Out Time (POT)·····	77
6.5.4 Break Even Point (BEP)·····	77
6.5.5 Shut Down Point (SDP)·····	77
6.5.6 Discount Cash Flow (DCF)·····	77
6.6 Kesimpulan	77
DAFTAR PUSTAKA	79
LAMPIRAN	

ABSTRAK

TiO₂ adalah salah satu industri yang memberikan manfaat besar bagi perkembangan dunia industri di Indonesia. Permintaannya semakin meningkat seiring dengan permintaan industri lain seperti industri cat, kertas, kain, dan industri lainnya.

Pabrik ini direncanakan beroperasi selama 330 hari/tahun dan 24 jam/hari dengan kapasitas produksi 120.000 ton/tahun. Proses yang digunakan adalah proses sulfat dengan bahan baku ilmenit, asam sulfat, air, dan serbuk besi sebagai reduktor pembantu. Berdasarkan tinjauan thermodinamika bahwa reaksi bersifat *eksothermis* dan berjalan searah ke produk (*irreversible*). Secara umum, tahapan proses produksi titanium dioksida yaitu : 1) Penyiapan bahan baku, 2) Pembentukan Produk, 3) Pemurnian produk. Sebagai penunjang, unit utilitas menyuplai kebutuhan air sebanyak 2.313,37 m³/hari, kebutuhan bahan bakar 100,24 ft³/hari, generator 1000 kW dan listrik sebanyak 640,75 kW.

Pabrik ini akan didirikan di provinsi Bangka Belitung. Pabrik ini didirikan seluas 22.200 m² dengan jumlah peerja 185 orang, sistem kerja *shift* dan *non shift*. Dari evaluasi ekonomi diperoleh POS sebelum pajak 6,98%; POS setelah pajak 4,88%; ROI sebelum pajak 45,23%; ROI setelah pajak 31,66%; POT sebelum pajak 1,81 tahun; POT setelah pajak 2,40 tahun; BEP 45,54%; SDP 17,97%; dan DCF 10 tahun. Berdasarkan hasil evaluasi tersebut maka pabrik titanium doksida dengan kapasitas 120.000 ton/tahun ini layak untuk didirikan.